

Concepts and Math Problems in Electronic Structure Calculations

Lin-Wang Wang

Scientific Computing Group

- Many-body Schrodinger's equations
- Density functional theory and single particle equation
- Selfconsistent calculation/nonlinear equation/optimization
- Optical properties
- Basis functions for wavefunctions
- Pseudopotentials
- Technical points in planewave calculations

Many body Schrodinger's equation

Schrodinger's equation (1930's): the great result of reductionism!

$$\{-\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j} \frac{1}{|r_{i} - r_{j}|} + \sum_{i,R} \frac{Z}{|r_{i} - R|} \} \Psi(r_{1},...r_{N},t) = i \frac{\partial}{\partial t} \Psi(r_{1},...r_{N},t)$$

All the material science and chemistry is included in this equation!

The challenge: to solve this equation for complex real systems.

For stationary solution: $\Psi(r_1,...r_N,t) = e^{-i\omega t} \Psi(r_1,...r_N)$

$$\{-\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j} \frac{1}{|r_{i} - r_{j}|} + \sum_{i,R} \frac{Z}{|r_{i} - R|} \} \Psi(r_{1},...r_{N}) = E\Psi(r_{1},...r_{N})$$

The famous Einstein formula: E=ħω

Ground state: the lowest E state; Excited state: higher E state.

Many body wavefunctions

Electrons are elementary particles, two electrons are indistinguishable

$$\Psi(r_1,...r_i...r_j...r_N) = \alpha \Psi(r_1,...r_j...r_i...r_N)$$

$$\alpha^2 = 1$$

lpha=1 , Boson: phonon, photon, W-boson, Higgs-boson, (usually particles which transmit forces)

 $\alpha=-1$, Fermion: electron, proton, neutron, quark, muon, (usually particles which constitute the matter)

For our case: electron

$$\Psi(r_1,...r_i...r_j...r_N) = -\Psi(r_1,...r_j...r_i...r_N)$$

Many body wavefunctions

$$\Psi(r_1,...r_i...r_j...r_N) = -\Psi(r_1,...r_j...r_i...r_N)$$
 antisymmetric
$$\iiint |\Psi(r_1,...r_N)|^2 dr_1...dr_N = N$$
 normalized

One example of the antisymmetric wavefunction: Slater determinate

$$\Psi(r_1....r_N) = \begin{bmatrix} \Phi_1(\mathbf{r}_1) & \cdots & \Phi_N(\mathbf{r}_1) \\ \cdots & \cdots & \cdots \\ \Phi_1(\mathbf{r}_N) & \cdots & \Phi_N(\mathbf{r}_N) \end{bmatrix}$$

This is the exact solution for:

$$\{-\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j} \frac{1}{|r_{i}|} + \sum_{i,R} \frac{Z}{|r_{i} - R|} \} \Psi(r_{1},...r_{N}) = E\Psi(r_{1},...r_{N})$$

The partial differential equation becomes separable

Another way to look at it: variational methods

$$E = \iiint \Psi(r_1,...r_N) \{ -\sum_i \frac{1}{2} \nabla_i^2 + \sum_{i,j} \frac{1}{|r_i - r_j|} + \sum_{i,R} \frac{Z}{|r_i - R|} \} \Psi(r_1,...r_N) dr_1...dr_N$$

The ground state corresponds to the optimized state Ψ which is antisymmetric and normalized.

So, we can try variational Ψ for whatever expressions we like

linear eigen value problem

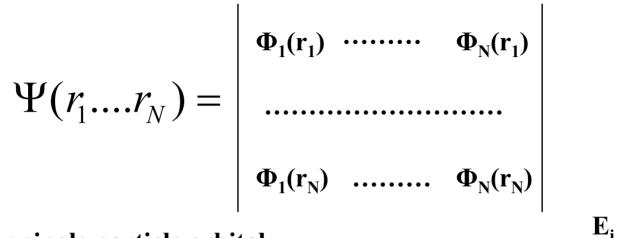
approximation

variational nonlinear problem on simplified functions

Plug in the Slater determinate for Ψ , we have (Hartree-Fock equation):

$$\{-\frac{1}{2}\nabla^{2} + \sum_{R} \frac{Z}{|r-R|} + \int \frac{\rho(r')}{|r-r'|} dr'\} \varphi_{i}(r) + \sum_{j} \int \frac{\varphi_{j}(r)}{|r-r'|} \varphi_{j}(r') \varphi_{i}(r') dr' = E_{i} \varphi_{i}(r)$$

Some concepts and terminologies



- $\Phi_{i}(r)$: single particle orbital
- One orbital can only have one electron (2 include spin)
 Pauli exclusion principle
- Φ_1 , Φ_2 ,... Φ_N the N occupied single particle orbitals
- We also have: Φ_{N+1} , Φ_{N+2} ,... the unoccupied orbitals
- Using one of Φ_{N+1} , Φ_{N+2} ,... to replace one of Φ_1 , Φ_2 ,... Φ_N the resulting Slater determinant will correspond to one excited state
- For the lowest excited state: $E_{excited} E_{ground} \approx E_{N+1} E_N$ (band gap)

Energy breakup

$$E_{tot}^{HF} = \sum_{i} -\frac{1}{2} \int \varphi_{i}(r) \nabla^{2} \varphi_{i}(r) dr + \int \sum_{R} \frac{Z}{|r-R|} \rho(r) dr + \frac{1}{2} \int \frac{\rho(r')\rho(r)}{|r-r'|} dr' dr$$

kinetic

Electron-ion

Electron Coulomb

$$+\sum_{i,j}\int \frac{\varphi_{j}(r)\varphi_{i}(r)\varphi_{j}(r')\varphi_{i}(r')}{|r-r'|}dr'dr$$

Exchange energy

 $E_{corr} = E_{exact} - E^{HF}$ Whatever left from HF

Kinetic: ~ 40 eV/atom Coulomb: ~ 40 eV/atom

Exchange: ~ 20eV/atom Correlation: ~ 4 eV/atom

Typical chemical bond: ~ 2 eV

For chemical accuracy, we need: ~ 0.05 eV/atom

Every term is important

Different configurations: CI

$$SD_{conf}(r_1,...r_N) = \begin{vmatrix} \Phi_1(r_1) & \cdots & \Phi_{j,c}(r_1) & \cdots & \Phi_N(r_1) \\ \vdots & \vdots & \vdots & \vdots \\ \Phi_1(r_N) & \cdots & \Phi_{j,c}(r_N) & \cdots & \Phi_N(r_N) \end{vmatrix}$$

$$CI: configuration interaction$$

$$\Psi(r_1,...r_N) = \sum_{config} C(config)SD_{config}(r_1,...,r_N)$$

$$i,v \quad hole$$

$$2$$

The number of configuration is exponential, only feasible for a few atom systems.

Judicious selection of configurations: \rightarrow MP2, coupled-cluster, etc

Traditional quantum chemistry approaches

More on variational many-body wavefunctions

$$\frac{\mathbf{e}}{\mathbf{e}}$$

Correlation effects: e e electron at r will repulse other electrons near r due to Coulomb inter.

$$\Psi(r_1....r_N) = \exp\left[-\sum_i \chi(r_i) - \sum_{ij} u(|r_i - r_j|)\right]$$

$$\text{Jastrow factor}$$

$$\Phi_1(\mathbf{r}_1) \quad \cdots \quad \Phi_N(\mathbf{r}_1)$$

$$\Phi_1(\mathbf{r}_N) \quad \cdots \quad \Phi_N(\mathbf{r}_N)$$

Unfortunately, cannot break down the following integration.

$$E = \iiint \Psi(r_1,...r_N) \{ -\sum_i \frac{1}{2} \nabla_i^2 + \sum_{i,j} \frac{1}{|r_i - r_j|} + \sum_{i,R} \frac{Z}{|r_i - R|} \} \Psi(r_1,...r_N) dr_1...dr_N$$

Using Monte-Carlo method to do the integration: variational quantum MC.

Diffusion quantum Monte-Carlo approach

$$\{-\sum_{i} \frac{1}{2} \nabla_{i}^{2} + \sum_{i,j} \frac{1}{|r_{i} - r_{j}|} + \sum_{i,R} \frac{Z}{|r_{i} - R|} \} \Psi(r_{1},...r_{N},t) = i \frac{\partial}{\partial t} \Psi(r_{1},...r_{N},t)$$

This looks like a classical diffusion equation with finite temperature

$${D\nabla^2 + V(\vec{r}) - \mu}S(\vec{r}, t) = \frac{\partial}{\partial t}S(\vec{r}, t)$$
 S(r,t) \rightarrow particle density

Using classical Monte-Carlo to simulate the random movements of particles in a 3N dimension space.

Problem: S is always positive, but ψ has both positive and negative due to antisymmetry \rightarrow the famous sign problem!

Fix nodal approx: use

$$\Phi_1(\mathbf{r}_1) \cdot \cdots \cdot \Phi_N(\mathbf{r}_1)$$

$$\Phi_1(\mathbf{r}_N) \cdot \cdots \cdot \Phi_N(\mathbf{r}_N)$$

to divide the 3N space into positive and negative compartments, move articles within.

Another approach: the density matrix method

$$E = \iiint \Psi(r_1,...r_N) \{ -\sum_i \frac{1}{2} \nabla_i^2 + \sum_{i,j} \frac{1}{|r_i - r_j|} + \sum_{i,R} \frac{Z}{|r_i - R|} \} \Psi(r_1,...r_N) dr_1...dr_N$$

$$E = \iiint \delta(r_1 - r_1') \delta(r_2 - r_2') \{ -\nabla_1^2 + \frac{1}{|r_1 - r_2|} + \sum_R \frac{Z}{|r_1 - R|} \} \rho(r_1, r_1'; r_2, r_2') dr_1 dr_1' dr_2 dr_2'$$

$$\rho(r_1, r_1'; r_2, r_2') = \iiint \Psi(r_1, r_2, r_3, ..., r_N) \Psi(r_1', r_2', r_3, ..., r_N) dr_3 ... dr_N$$

Great, reduce the N variable function into a 4 variable function!!

Problem: $\rho(r_1, r_1'; r_2, r_2')$ might not be N-representable!

- Many necessary conditions to make ρ N-representable
- The ρ is within some hyperdimension convex cone.
- Linear programming optimization approach
- Recent work: Z. Zhao, et.al, it can be very accurate, but it is still very expensive (a few atoms).
- No known sufficient condition

The density functional theory

$$\rho(r_1) = \iint \Psi(r_1, r_2, r_3, ... r_N) \Psi(r_1, r_2, r_3, ... r_N) dr_2 ... dr_N$$

Any single particle $\rho(r)$ is N-representable.

Can we use ρ as one basic variable to determine all other things?

$$E = \iiint \Psi(r_1,...r_N) \{ -\sum_i \frac{1}{2} \nabla_i^2 + \sum_{i,j} \frac{1}{|r_i - r_j|} + \sum_i V(r_i) \} \Psi(r_1,...r_N) dr_1...dr_N$$

V(r) is one basic variable which determines everything.

So $V \rightarrow \rho$, Now, can $\rho \rightarrow V$? (ρ uniquely determine V)

We need to prove: we cannot have $V_1 \rightarrow \rho$, and $V_2 \rightarrow \rho$.

Density functional theory (continued)

$$E = \iiint \Psi(r_1,...r_N) \{ -\sum_i \frac{1}{2} \nabla_i^2 + \sum_{i,j} \frac{1}{|r_i - r_j|} + \sum_i V(r_i) \} \Psi(r_1,...r_N) dr_1...dr_N$$

We need to prove: we cannot have $V_1 \rightarrow \rho$, and $V_2 \rightarrow \rho$.

Suppose this happens, then $V_1 \rightarrow \Psi_1 \rightarrow \rho$ and $V_2 \rightarrow \Psi_2 \rightarrow \rho$

• Since Ψ_1 is the variational minimum of V_1 , so: $E(V_1, \Psi_1) < E(V_1, \Psi_2)$

$$E_{K}[\Psi_{1}] + E_{Coul}[\Psi_{1}] + \int V_{1}(r)\rho(r)dr < E_{K}[\Psi_{2}] + E_{Coul}[\Psi_{2}] + \int V_{1}(r)\rho(r)dr$$

$$E_{K}[\Psi_{1}] + E_{Coul}[\Psi_{1}] < E_{K}[\Psi_{2}] + E_{Coul}[\Psi_{2}] \qquad \mathbf{Eq(1)}$$

• Since Ψ_2 is the variational minimum of V_2 , so: $E(V_2, \Psi_2) < E(V_2, \Psi_1)$

$$E_K[\Psi_2] + E_{Coul}[\Psi_2] < E_K[\Psi_1] + E_{Coul}[\Psi_1]$$
 Eq(2)

Eq(1),(2) contradict with each other, so we cannot have $V_1 \rightarrow \rho$, and $V_2 \rightarrow \rho$

We can also prove, smooth ρ is V-representable (i.e, can find a V $\rightarrow \rho$)

In summary, V is a functional of ρ , thus everything is a functional of ρ

Kohn-Sham equation and LDA

$\Psi[\rho]$ exists, so:

$$E = \iiint \Psi(r_1, ... r_N) \{ -\sum_{i} \frac{1}{2} \nabla_i^2 + \sum_{i,j} \frac{1}{|r_i - r_j|} + \sum_{i} V(r_i) \} \Psi(r_1, ... r_N) dr_1 ... dr_N$$

$$E[\rho] = E_{kin}[\rho] + \frac{1}{2} \int \frac{\rho(r)\rho(r')}{|r - r'|} dr dr' + E_{xc}[\rho] + \int V(r)\rho(r) dr$$

Great, change the problem to a fluid-dynamics like problem, just one func. $\rho(r)$

Problem: DFT proves that $E_{kin}[\rho]$, $E_{xc}[\rho]$ exist, but they are unknown.

Many approx. for $E_{kin}[\rho]$: Thomas-Fermi, Gradient Expan., Wang-Teter.

L. Sham's idea: approximate
$$\mathbf{E}_{kin}[\mathbf{\rho}]$$
 by $\int -\frac{1}{2} \sum_{i} \varphi_{i}(r) \nabla^{2} \varphi_{i}(r) dr$ and $\rho(r) = \sum_{i} |\varphi_{i}(r)|^{2}$, $\{\varphi_{i}(r)\}$ are orthonormal.

Kohn-Sham equation and LDA (continued)

Use local density approximation (LDA) for $E_{xc}[\rho]$:

$$E_{xc}[\rho] = \int \varepsilon_{xc}(\rho(r))dr$$

Find function $\varepsilon_{xc}(\rho)$ from simple systems: homogeneous electron gas, where The total energy has been calculated by QMC. The Perdew-Zunger paper.

Now, we have the LDA formula:

$$E_{LDA} = -\frac{1}{2} \sum_{i} \int \varphi_{i}(r) \nabla^{2} \varphi_{i}(r) dr + \frac{1}{2} \int \frac{\rho(r)\rho(r')}{|r-r'|} dr dr' + \int \varepsilon_{xc}(\rho(r)) dr + \int V(r)\rho(r) dr$$

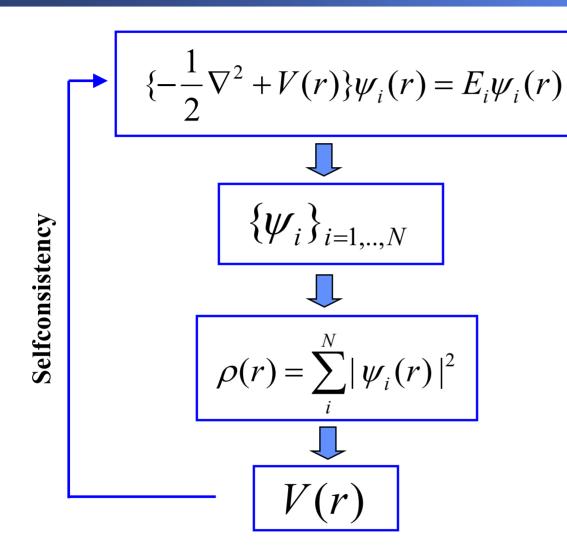
The ground state solution is a minimum of E_{LDA} for variational $\{\phi_i(r)\}$

The variational minimum condition: (Kohn-Sham equation)

$$\{-\frac{1}{2}\nabla^2 + V_{LDA}(r)\}\varphi_i(r) = E_i\varphi_i(r)$$

and:
$$V_{LDA}(r) = \int \frac{\rho(r')}{|r-r'|} dr' + \mu_{xc}(\rho(r)) + V(r)$$

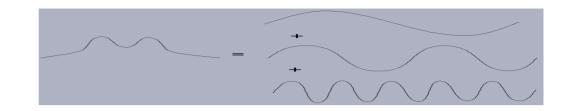
Selfconsistent calculations



N electron N wave functions

Planewave expansion of the wavefunction

$$\psi(r) = \sum_{q} C(q)e^{iqr}$$

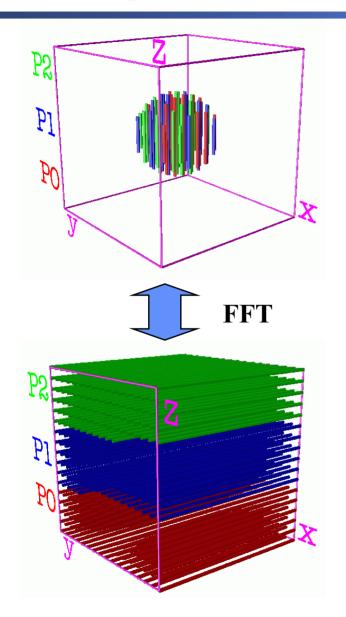


Due space representation

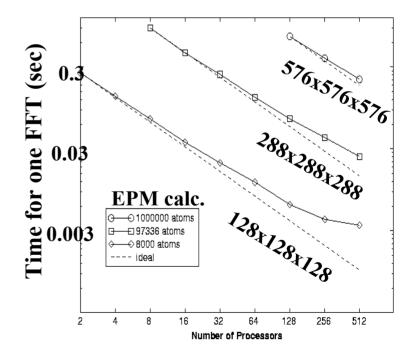
$$\{-\frac{1}{2}\nabla^2 + V(r)\}\psi_i(r) = E_i\psi_i(r)$$
 diagonal diagonal in q space in real space

Fast Fourier Transformation between real space $\psi(r)$ and Fourier space C(q).

A parallel Fast Fourier Transformation code



- •Specially designed for PW elec. structure calculation.
- Work load balance
- •Memory balance
- •Minimum communication



FFT grids

FFT

Real space grid

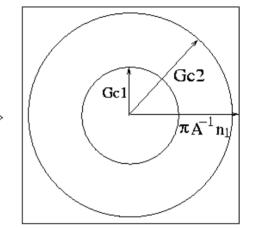
V(r)

 $\rho(\mathbf{r})$

G-space grid

$$\Psi(G)$$

 $\rho(G)$



$$G_{c1} < 0.5 G_{c2}$$
, so: $\int V(r)\psi^{2}(r)dr = \Delta\Omega \sum_{grid-i} V'(r_{i})\psi^{2}(r_{i})$

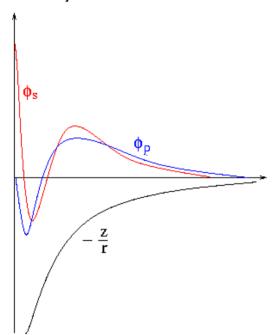
It doesn't have the usual 1/h2 discretization error, it is exact!

We are not doing the usual discretization

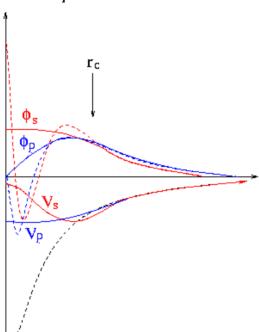
Note:
$$V'(r_i) \neq V(r_i)$$
: $V(r) = \int_0^\infty e^{iqr} V(q) dq$, $V'(r) = \int_0^{Gc2} e^{iqr} V(q) dq$

Pseudopotentials

Original wavefunctions and potential



The pseudo-wavefunctions and potentials



The price: need additional nonlocal potential.

KB form:
$$\widehat{V}_{nonloc}\varphi(r) = \sum_{R,ref} W_{R,ref}(r) \int W_{R,ref}(r') \varphi(r') dr'$$

A few types of eigen value problems

(1) Total energy calculations: need all the occupied states (5% of the all lowest eigenstates). Need them inside a outer loop

(2) Nonselfconsistent optical property calculations: need a few states at the interior of the spectrum. One shot calculation.

(3) Transport problems: a special eigenstate problem, need eigenstates under special boundary conditions.

Total energy problem

$$\{-\frac{1}{2}\nabla^2 + V(r)\}\psi_i(r) = E_i\psi_i(r)$$
 Need: $\{\psi_i\}_{i=1,...,N}$

- (1) The explicit matrix H is only available for very small systems (used in 70's).
- (2) For large systems, $H\psi$ is done using FFT (due space representation), so iterative methods are used.
- (3) Current methods: CG on Grassman's manifold: $Min\langle \psi_i | H | \psi_i \rangle$ Under constraint: $\langle \psi_i | \psi_j \rangle = \delta_{ij}$
- (4) Band by band algorithm vs all band algorithm

- (1) Davison's method vs CG method
- (2) Residual minimization method / direct inversion in the iterative subspace (RMM-DIIS)

Using $\phi_l = HR_{l-1}$ to generate a Krylov subspace $\{\phi_l\}$ and use $\{\phi_l\}$ to get the minimum residual

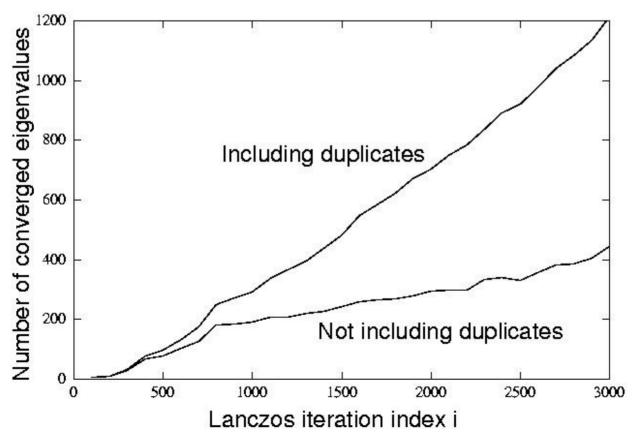
$$R_{l} = (H - \langle \psi_{l} | H | \psi_{l} \rangle) \psi_{l}$$

This by itself is very slow, but subspace diagonalization saves the algorithm

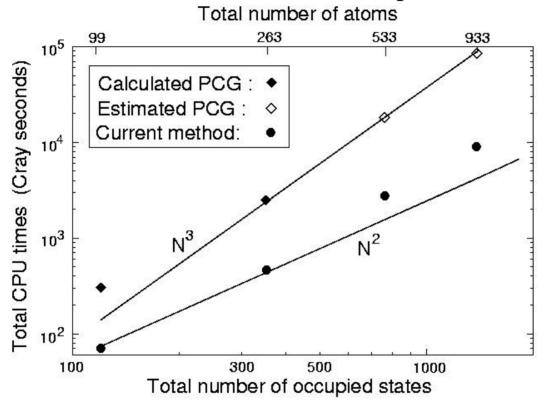
Doing each band independently, avoid orthogonalization

- (1) Preconditioning: kinetic energy, diagonal precondition
- (2) Lanczos method: can be very fast.

Long Lanczos iteration (10,000) without explicit orth.



Lanczos is faster than CG even without precond.



Challenge: (1) how to use precond. (2) how to restart.

Total energy calculation (continued)

Wish list for total energy calculation algorithms

- (1) Iterative method based on $H\psi$
- (2) Preconditioning, if possible.
- (3) Restart from previously converged states.
- (4) Share Krylov space vectors among eigenstates (Lanczos type methods).
- (5) Avoid frequent orthogonalization among the eigenstates.

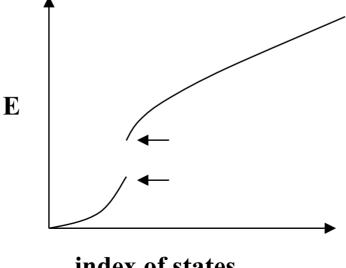
Interior eigenstate problem

The challenge: H is not explicitly known, cannot be inverted

Have to rely on iterative methods.

Typically there is a gap in the spectrum, only interested in

gap edge states.

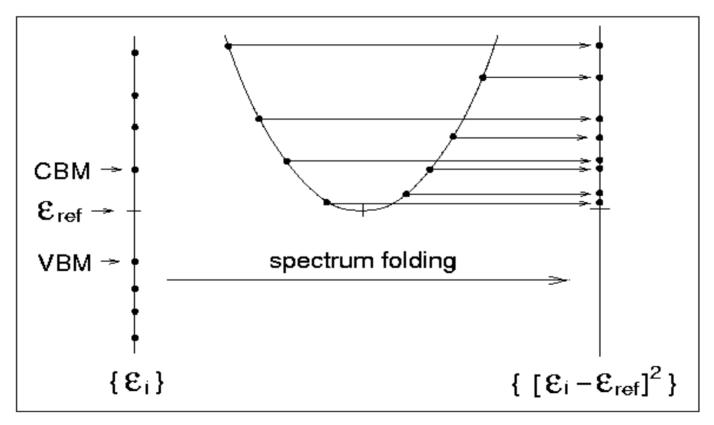


index of states

Folded Spectrum Method and Escan Code

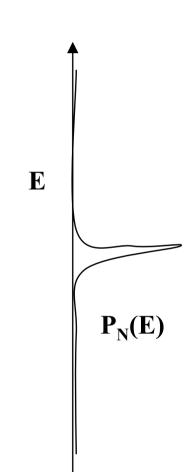
$$H\psi_i = \varepsilon_i \psi_i$$

$$(H - \varepsilon_{ref})^2 \psi_i = (\varepsilon_i - \varepsilon_{ref})^2 \psi_i$$



Other methods for interior eigenstates

- (1) We can try other methods on $(H-E_{ref})^2$, e.g, Lanczos
- (2) Outer / inner loop methods: inner loop try to approximately invert Hy=x. Does it worth it? How do they compare to direct, one-loop method?
- (3) Jacobi-Davison method.
- (4) Challenge: current method works on $(H-E_{ref})^2$, the condition number is much worse than H. Can any interior eigenstate method be as easy as working on H?
- (5) Is interior eigenstate problem intrinsically hard for interative methods. $\psi_i = P_N(H)\phi_{random}$



Other ideas

$$\{-\frac{1}{2}\nabla^2 + V(r)\}\psi_i(r) = E_i\psi_i(r)$$

Using 3D 7 points finite difference formula for ∇^2 , H is a sparse matrix in real space grid presentation. The resulting H' can be factorized directly using $\sim 200~N_{grid}$. Then H'y=x can be solved in a linear scaling.

This can be used as a preconditioning, or help to solve the original Hy=x.

Some problems: there are nonlocal parts in V(r), thus it is not really diagonal in real space.

The transport problems

$$\{-\frac{1}{2}\nabla^2 + V(r)\}\psi(r) = E\psi(r)$$

for a given E inside a real space domain, outside this domain (or at the boundary), we have special boundary conditions, e.g.

$$\psi(r) = \exp(ik(E) \bullet r) + \beta \exp(-ik(E) \bullet r)$$

$$\psi(r) = \alpha \exp(ik(E) \bullet r)$$

$$\psi(r) = \exp(ik(E) \bullet r)$$

$$\psi(r) = \alpha \exp(ik(E) \bullet r)$$

$$\{-\frac{1}{2}\nabla^2 + V(r)\}\psi(r) = E\psi(r)$$

